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S c a l a r  F i e l d  E q u a t i o n  i n  R o b e r t s o n - W a l k e r  

S p a c e - T i m e  

A n t o n i o  Zecca  I 

Received October 2, 1996 

The quantization of the scalar field is reconsidered in some of its basic elements 
in the context of the Robertson-Walker space-time. The integration of the 
generalized Klein-Gordon equation is performed by preliminary separation of 
the equation with the usual separation method. The orthonormal mode solutions 
are determined by the explicit integration of the resulting angular and radial 
equations and by standard properties of the time equation. The time evolution 
given by the standard cosmological model is briefly discussed. 

1. INTRODUCTION 

The scalar field equation, which is the simplest relativistic field equation 
associated to spin-0 particles, has been widely studied in connection with 
the problem of  the field quantization in curved space-time (Birrell and Davies, 
1982, and references therein; Fulling, 1989). The field equation can be derived 
by applying to the Lagrangian density 

= �89 - [m 2 + ~R(x)]dp(x) 2} (1) 

[~b(x) is the scalar field, m is the mass of the field quanta, V~ is the covariant 
derivative, R(x) = g~R~ is the Ricci scalar, and ~ is a real numerical factor] 
the Euler-Lagrange equation 

- -  - v ~ -  - 0 (2) 
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which follows from the Hamilton principle relative to the scalar action con- 
structed from ~ (e.g., Illge, 1993). One gets the generalized Klein- 
Gordon equation 

V~W+(x) + [m 2 + ~ (x ) ]+ (x )  = 0 (3) 

Corresponding to the solutions ~bt, r of equation (3) one also considers the 
four-vector (the four-current if qbl = ~bz) 

which is divergence-free as a direct consequence of equation (3) and of the 
reality of 6. Accordingly, the expression 

(qbl' ~b2) ~'~ fX/l~(~bl' r dX (5) 

-----" f Jt(~bl, qb2)(-gt0 )l/z d3x (6) 
Jt  t o 

(X is a spacelike hypersurface of volume element dX and n ~ is a future- 
directed unit vector orthogonal to X) is independent of the Cauchy surface 
X, as follows from (4) and (5) by Gauss' theorem (Birrell and Davies, 
1982) and defines an inner product whose explicit value can be more easily 
calculated by expression (6). One can then select a complete set of solutions 
~b,~ of equation (3) which are orthonormal in the product (5), 

(qb,~, ~b~) = ~,~, (~b*, %b~) = -~,~,  (~b,,, qb~) = 0 (7) 

and proceed with the covariant quantization of the theory in analogy with 
the Minkowski-space case. [As is well known, there remains, however, an 
intrinsic ambiguity in the quantization procedure due to the lack of privileged 
coordinates (Fulling, 1973; Birrell and Davies, 1982).] 

From the above general picture it follows that, in the case of concrete 
examples of space-time, a central role for covariant quantization is played 
by the knowledge of the explicit solutions of equation (3). The mentioned 
procedure has been completely performed in the case of the Robertson- 
Walker space-time (Bander and Itzykson, 1966; Parker and Fulling, 1974; 
Ford, 1976); the results are summarized in Birrell and Davies (1982). 

It is of some interest to have a unified and simple derivation of the 
result relative to the case of the Robertson-Walker space-time. This is what 
will be done in the following sections, where the standard separation method 
is applied directly to equation (3) without introducing any conformal time 
parameter. The separated angular and radial equations are integrated explicitly. 
The general normalization conditions (7) are imposed on the solutions of 
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equation (3) by exploiting a formal property of the separated time equation. 
The time equation can be given in a closed form by using a conformal time 
parameter, but its analytical solution is in general difficult. 

2. SEPARATION OF THE EQUATION 

In the Robertson-Walker space-time whose metric is given by 

dr_Z + r2(d02 + sin20 dqb2)] ds2 = dta - R2(t) 1 - ar z (a = 0, _1) 

(8) 

the field equation (3) becomes, in terms of the coordinate derivatives and by 
using the relation F~,~ = ( - g ) - m O ~ ( - g ) l / z ,  

+ l - a r  2 1 ( 1 ) R(t) cot0  
R2(t ) ~rr r2RZ(t ) ~boo + --sin20 ~b~ + 3 R-~ ~bt r2R2(t ) ~)0 

3ar 2 -- 2 
+ rRZ(t) +r + ( m2 + ~/~(t))~b = 0 (a = 0, + 1) (9) 

where now R(t) = 6[i~(t)R(t) + R2(t) + a]lRZ(t). 
[It must be remarked that equation (3) could be made explicit also by 

the Newman-Penrose formalism, Newman and Penrose (1962). Even if this 
method is in general convenient for higher spin values, in the present case 
it is quite cumbersome. In any event, when applied to equation (3), by the 
choice of the null tetrad frame already used in other situations (Zecca, 1996), 
it leads exactly to equation (9).] By setting now 

d~(r, O, r t) = T(t)x(O, r (lO) 

we can separate equation (9) to get 

TR 2 + 3RRT + [k z + mZR 2 + 6~(RR +/~2 + a)]T = 0 (11) 

1 
• + sin/0 •  + cot 0• - h •  (12) 

(1 - a r 2 ) S  " +  - 3ar)S'  + k 2 - ~  = 0 (13) 

k 2, h are the separation constants relative to the time and angular equations, 
respectively (i" = dT/dt, S' = dS/dr). Equation (12) is the angular part of the 
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Schr6dinger equation in polar coordinates. By assuming the usual regularity 
conditions on • for 0 = 0, "rr and q~ = 0, 2"rr, one has therefore 

x(O, q~) = Ytm(O, q~), h = l(l + 1), m = - I ,  - l  + 1 . . . . .  l 

( l =  0, 1 ,2 ,3  . . . .  ) (14) 

As to the time equation (11), it is independent of a only for ~ = 0. In view 
of making explicit the condition (7), we remark that the Wronskian of the 
solution Tk(t) satisfies 

_ R (TkT~ - T k ~ )  (15) d (TkTff - i"kT~) = 3~  
dt 

as a consequence of equation (11), and it can therefore be normalized to 

i 
Tfl ' f  - ~r,T~' = ~-~ (16) 

With regard to equation (13), it strictly depends on the different values of a, 
which will be considered separately. Its solutions must also satisfy the condi- 
tion S(0) = 0 for h 4: 0, as follows from the equation itself. 

3. THE RADIAL EQUATIONS 

Case a = O. Equation (13) becomes 

S" + 2 S' [ k2 l(l +r 1)] S = 0  (17) 

whose acceptable solutions are the spherical Bessel functions of the first kind 
jl(kr). Then the mode solutions 

+tam(r, O, q~, t) = Tk(t)Ylm(O, q~)(2/'ff)l/2kjl(kr) (18) 

satisfy the proper orthonormalization conditions 

(~)klm, (~k'l'm') = ~mm'~ll'~( k -- k ' )  

(~b~,.. ~b~r,.,) = -~mm,~U,~(k - k') (19) 

(+klm, +~l'm') = 0 

as follows from equations (6), (16), and (18). 
The cases a = +-1 can be reduced by first setting S = rtZ(r) in Eq. 

(13), thus obtaining for Z the equation 

( 1 - a r 2 ) Z " +  [ 21+2r ar(2l+3)] Z ' - [ a ( l z + 2 1 ) - k 2 ] Z = O  

(20) 
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In the case a = 1, by setting r = sin • (0 ----- X -< "tr) and then x = (cos 
• + 1)/2, equation (20) becomes  the hypergeometr ic  equat ion 

x(1 - x ) Z " +  l + - ~ - x ( 3 +  2l) Z ' -  ( / 2 + 2 1 _ k 2 ) Z = 0  (21) 

Acceptable  solutions are given by F(l  + 1 + H, l + 1 - H; l + 3/2; x), 
where H 2 = k 2 + 1, and one could proceed as in the fol lowing case a = 
- 1 .  However ,  in the present  case, it is also possible  to select a (complete)  
countable set o f  solutions by choosing l + 1 - H = d (d = 0, 1, 2 . . . .  ) or 
H =  l +  1 + d = n w i t h n  = 1 , 2 , 3  . . . .  (k 2 = n 2 -  1 ) . H e n c e Z =  F(l  
+ 1 - n, l + 1 + n; l + 3/2; x) -- C~+_~_~(cos X), C~ being the ultraspherical 
(Gegenbauer)  polynomials  (Abramovi tz  and Stegun, 1972). Therefore  a com-  
plete set o f  radial modes  is given by (Ford, 1976) 

[2 1112 
Snl = 2ll[ (n -- ! -- 1)! n! -(n ~- ~. rlCl+ll-l(COS X) (r  = sin X) (22) 

whose corresponding ~b~lm = 

( ~)nlm, 

('~m, 

(f~nlm, 

T n ( t ) Y t m ( O ,  q~)Sn l ( r )  (k2~ = n 2 - 1) satisfy 

f~n'l 'm') = ~mm'~l l '~nn ' 

~)*n'l'm') = - -~mm'~ l l '~nn  ' (23) 
~'~rm') = o 

In the case  a = - 1 ,  by setting r = sinh X (0 -< X -< oo) in equation 
(20) and then x = (cosh • + 1)/2 in the resulting equation, one gets exact ly  
equation (21) with the substitution k --> ik. I f  now - L  2 = 1 - k 2, by 
using the iterated differential formula  and a special e lementary  case o f  the 
hypergeometr ic  function (Abramovi tz  and Stegun, 1970), one gets 

Z ~- F( l  + 1 - il, l + 1 + il; l + 3 /2 ;x )  

d •  F ( - i L ,  iL; 1/2;x)  
d cosh 

~ cos L• (24) 
cosh X 

By repeated integration by parts on the r variable, one can easily show (Bander  
and I tzykson,  1966; Dolginov and Toptygin,  1960) that the radial functions 

Su(r) = L2(L 2 + 1) . . .  (L 2 + 12) r I cos L X (r = sinh X) 
c h x  

(25) 
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give the proper orthonormal property of the solutions ~bu,~ = TL(t)Ylm 
(0, q~)SLt(r): 

(r r = ~mm'~ll '~( L -- t ' )  

(~)~lm, (])~'l'm') = - -~mm'~ l l ' ~ ( t  --  L t) ( 2 6 )  

('bUm, +~'rm') = 0 

4. T H E  TIME E V O L U T I O N  

The time equation can be solved directly in the case of  static Robertson- 
Walker space-time (R = R0). The normalized solutions of equation (11) are 
in this case 

where 

Tk(t) = (2tOkR3) - ll2e-i~g (27) 

1 ,/m2R~ + k2 tOk = R0 + 6a~ (28) 

In the Einstein universe (a = 1), by choosing also ~ = 1/6, the discrete 
modes of the previous section have frequencies 

1 ~/mZR2 + n2 ' n = 1, 2, 3, (29) 
~ ~--~ (~n -~ ~ 0  . . .  

with a degeneracy of n 2 as pointed out by Ford (1976). 
Equation (11) can be solved in principle by giving the explicit form of 

R(t). An analytical solution of  equation (11) is not easy in general nor in the 
standard cosmology, where R(t) is given in a parametric form. Indeed, it is 
well known that (e.g., Kolb and Turner, 1990) the motion of the open and 
closed standard cosmological models is respectively of the form 

R(t) = A(cosh t~ - 1), t = B ( s i n h  qJ - qJ), ~ >- 0 (a  = - 1) ( 3 0 )  

R(t) = C(1 - cos 0), t = D(0 - sin 0), 0 <-- 0 --< 2~r (a = 1) 

(31) 

A, B, C, D are positive constants depending on the physical content of 
the theory. Some simplification can be obtained by using the conformal 
time parameter 

Is dt (32) 
r = R(t) 
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in terms of  which equation (11) becomes 

R ' T ' [  rn2R2 ('~R )] T" + 2 ~ -  + k 2 + + 66 + a  T =  0 (33) 

where now R = R(r) and ' = d/dr. I f  the integral (32) is performed by 
using the expressions (30) and (31), one gets "r = (B/A)t~ and r = (D/C)O, 
respectively. Therefore, in the standard model 

R(r) = a( c~ a ) r -  1 (a = - 1 )  (34) 

R(r) = C 1 - cos ~ ' r  (a = 1) (35) 

When inserted in equation (33) these expressions give a closed form of the 
time equation that not only could be solved by a numerical integration, but 
that also gives information on some limiting physical situations. As an exam- 
ple, the open, massless case (m = 0, a = - 1 ,  ~ = 1/6) gives, for large t (r  
> >  1), the equation 

T " + 2 A T ' +  k 2 +  - 1  T = 0  
e 

leading to the solution 

T ~ TL(t) = ~ (2L) -1~ exp - + iL x ('c > >  1, 

which satisfies the normalization condition (16). 

(36) 

L 2 = k  2 - 1) 

(37) 
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